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An algorithm for estimating the optimum combining weights for the Ka-band

(33.7-GHz) array feed compensation system has been developed and analyzed. The
input signal is assumed to be broadband radiation of thermal origin, generated by
a distant radio source. Currently, seven video converters operating in conjunction

with the real-time correlator are used to obtain these weight estimates. The algo-

rithm described here requires only simple operations that can be implemented on a

PC-based combining system, greatly reducing the amount of hardware. Therefore,

system reliability and portability will be improved.

I. Introduction

At the present time, there is considerable interest in

operating the DSN at increasingly higher carrier frequen-
cies in order to realize the inherent advantages associ-

ated with shorter wavelengths, namely, greater antenna

gains, increased useful bandwidth, and reduced sensitiv-
ity to plasma effects. Consequently, there is an effort un-

derway to demonstrate the feasibility of using Ka-band

(33.7-GHz) carrier frequencies for deep space telemetry.
However, there are also disadvantages associated with the

use of higher carrier frequencies, such as greater sensitivity
to weather effects, increased requirements on pointing ac-

curacy, and reduced antenna gains due to imperfections in

the antenna's reflecting surfaces. Such imperfections be-

come particularly noticeable on large receiving antennas,

where gravitational distortions, wind-induced vibrations,

and collimation problems can seriously degrade antenna

performance. Some of these losses can be recovered with a

properly designed compensation system employing an ar-
ray of receiving horns in the focal plane of the antenna; a

conceptual design of such a combining system is shown in

Fig. 1. Complete descriptions and analyses of a real-time

array feed compensation system designed for deep space

telemetry can be found in the literature [1-3]. Recently,
a seven-element array feed compensation system has been

installed at DSS 13 for the purpose of demonstrating com-

bining concepts in real time.

Perhaps the most serious problem encountered during

the Ka-band array feed compensation effort was the lack of
reliable coherent sources in the antenna's far field. Since
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this is not an operational frequency band, no spacecraft

has yet been built employing Ka-band carrier frequencies

(Mars Observer did carry a low-power Ka-band beacon,
but this spacecraft ceased to function before reaching its

target). However, since only spatial coherence is required
to demonstrate the array feed combining concept, it is

possible to carry out weighted combining operations using
natural radio sources, such as quasars and planets. Since

these are always in the antenna's far field, the only addi-

tional requirement is that the sources remain unresolved.
This article is devoted to the derivation of the optimum

combining weights for maximizing he signal-to-noise ratio

(SNR) of the combined signal and the estimation of the op-
timum combining weights in real time from natural radio

signals observed in the presence of additive noise.

II. The Received Signal

A functional block diagram of the combining system is

shown in Fig. 2. The array horns receive a broadband sig-

nal of thermal origin from a distant point source, each with

different amplitude and phase introduced by the antenna
distortions. An independent noise waveform is added to

each signal in every channel, the result of receiver noise

plus background radiation received from all directions in

space. After passing through narrowband filters of center
frequency w, the received signal can be represented in the
kth channel as

rk(t) = sk(t) + nk(t) k = 1, 2, ... , If (la)

where

sk(t) = v_& {at(t)cos (_t + 0k)

+ a,(t) sin (wt + 0k)) (lb)

nk(t) = v/2{nck(t)cos(wt)+n,k(t)sin(wt)} (le)

Note that the signal components in the various chan-
nels differ from each other only in their amplitude and

phase, having been generated by the same point source.

Thus, the random processes sk(t) are completely corre-
lated. However, the noise processes nk(t) are assumed

to be uncorrelated in all channels, as these are composed

of thermal noise generated within the receivers and back-

ground radiation arriving from all directions in space.

The received waveforms are downconverted to base-

band in-phase and quadrature signals rlk(t) and rqk(t)

by premultiplying with local oscillator signals of the form

v_cos (wt) and v_sin (wt), and low-pass filtering:

.,k(t) = slk(t) + nxk(t) (2a)

.Qk(t) = *_k(t) + n_k(t) (25)

stk(t) = Sk {at(t) cos (Ok) - a,(t) sin(0k)} (2c)

sQk(t) = Sk {a_(t) sin (Ok) + a_(t) cos (Oh)} (2d)

.ik(t) = .ok(t) - .,k(t) (2e)

,_qk(t)= -_k(t)+ n,k(t) (20

After sampling the baseband waveforms, the resulting

in-phase and quadrature samples may be treated as com-

plex samples rk(i), defined as

fk(i) = gk(i) + ilk(i) (3a)

where

gk(i) = stk(i) + jsQk(i) (3b)

ilk(i) = nlk(i) + jnQk(i) (3c)

In other words, we shall use complex arithmetic to operate

on these samples.

Defining the complex coefficient Sk = Sk ejok, Eq. (3b)
can also be written as

gk(i) = Sk {at(i) + jas(i)} = &a(i) (4)

which shows that the complex channel scaling factors sep-

arate from the temporal variations.

The real and imaginary parts of the complex noise se-

quence are independent random sequences, each with vari-

ance cry. The components of the signal sequence, at(i)
and as(i), are also independent random sequences, being

of thermal origin. However, since we are interested in ex-
tracting the complex magnitude Sk, it is reasonable to let

each signal component have variance 1/2, so as not to in-
troduce additional scaling. In the following, the complex

signal coefficients and the noise variances will be assumed

to be constants independent of time.
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III. Combining Weights to Maximize SNR

The goal of the combining operation is to maximize
the SNR of the combined sequence. The approach is to

multiply each sequence by a complex combining weight

with the property that the sum of the weighted sequences

achieves the greatest SNR.

Let the kth combining weight be denoted by _bk. Mul-

tiplying each received sequence by the corresponding com-

plex weight and summing yields the combined sequence

z(i):

K

_(i) = Z _k(i) ffJk(i) (5)
k=l

With go(i) = _g= 1 g_(i) _k(i) denoting the combined

signal, the SNR of the combined sequence is defined as

K ~ 2

pz - var {_(i)}
2I_12 _

k----1

This is the quantity we wish to maximize by judicious

selection of the combining weights.

The optimum combining weights are obtained by means

of the Schwarz inequality. Writing the combined sequence

as

(7)

and applying the Schwarz inequality, yields

(8)

Dividing both sides by the first term on the right-hand

side of Eq. (8), we obtain

K _ 2

k=l (

'< I' -
k=l

Apo (9)

which shows that for any choice of combining weights, the
achievable SNR is bounded from above by the sum of the

channel SNRs. Except for an arbitrary complex factor,
equality is achieved when we let vf2t_k = S_/x/_k,

whereby the optimum combining weights are determined

in terms of the signal and noise parameters as

wk = 2$_ (10)

The combined SNR is maximized when each sequence

is multiplied by the conjugate of the signal scaling factor

and divided by the variance of the additive noise in that

channel. Therefore, these quantities have to be estimated

in real time to determine the correct combining weights.

IV. Parameter Estimates

The estimator described here is based on the observa-

tion that the temporal variation of the signal components

is identical in every channel. This implies that the ex-

pected value of the product of a received sequence with the
complex conjugate of a sequence from any other channel

is equal to the product of the complex coefficients. That

is,

--S_&_ (11)

The last equality follows from the definition EIa(i)I 2 =

1, and the assumption that noise sequences are not cor-

related with other noise sequences or with the signal se-

quence. If the received sequences are ergodic, then ensem-

ble and time averages are identical, suggesting the follow-

ing estimates for the coefficient products:

~"_- L

S_S,n _-1-- Z f_(i)_,,_(i )
gem L i= 1

t,m= 1,2,...,K; gem (12)



Asthenumberof termsgrowswithoutbound,thees-
timationerrorapproacheszero.With thetotal number
of channelsequalto K, index the channels according to

the SNR, so that channel number 1 contains the greatest

SNR, channel number 2 the second-greatest, and so on (in

case of equalities, an arbitrary choice can be made). Thus,

we may view channel 1 as the "reference channel," as it

provides the highest fidelity signal. Consider the estimates
of the products StSm:

L

S_S,,_ = L _*l(i)_m(i) m = 2,3,... ,K (13)
i=l

If S[ were known, then we could estimate Sin, m =

2, 3,..., K, by means of the formula

L - S;ym
£

(14)

Even if only IS1[ were known (that is, if no phase in-

formation could be obtained), we could still determine
:_,_e -je', where 01 is the argument of 31. Since in our

application the combining weights may be multiplied by

a complex constant without affecting the combined SNR,
the phase of the reference channel need not be estimated.

Thus, we turn our attention to the estimation of the signal

magnitude in the central reference channel.

An estimate of ISI[ can be obtained in the following

manner, using well-established experimental techniques.

With the antenna pointing "on-source," we obtain an es-

timate of the total power P,I, by averaging L independent

sample powers:

L

A 1 g'la(i) + ill(i) 2
/5tl = _ '/_1 (15a)

Next, we point .the antenna "off-source" and obtain an

estimate of the noise power using subsequent samples:

2L
A 1
t5'1:_ Z lfi1(i)12 (15b)

i=L+I

Since

= + 2cr_ (16a)

and

(16b)

it follows that

_1 2 P_I --Pnl; Ptl ___ Phi (17)
= A A

not defined; P,_, > Pt,

is a reasonable estimate of IS112 when the average signal

power is large compared to the random variations. When

the signal power is not sufficiently great, it is possible for

the estimate to become negative, which is meaningless for

a power estimate and, therefore, should not be used.

The estimate of S1 follows from Eq. (17) as

= (18)

Using this estimate, the signal coefficients for the outer

channels may be obtained from Eqs. (12) and (14), except

for a common complex coefficient, as follows:

A

_m__--'-j0' _ SrSm (19)

The complex coefficient e -j°_ has no effect on the com-

biner performance, since the combining weights will in-

clude this factor, effectively setting the average phase of

the combined signal to zero.

V. Statistics of the Weight Estimates

The combining weights that maximize the SNR of the
combined samples are defined in Eq. (10), repeated here
for convenience:

A S*_ k

2_
(2o)

Each complex weight may be multiplied by a complex

constant without affecting combiner performance. Thus,
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for our purposes, it is sufficient to estimate the "rotated"

weights

A _ _e-_ ° SlS_
(21)

instead, without explicitly determining the phase of the

central channel, 01.

The denominator of each weight is simply an estimate
of the noise variance in that channel. The noise variance

in the kth channel, 2_, is estimated by means of simul-
taneous off-source power measurements in all/( channels

(both real and imaginary noise components have variance

a_, hence the factor of 2 in the variance of the complex

noise). If M samples are used, the estimate of the variance
in the kth channel is of the form

M
A 1

= I  (012
i=1

_ n_(i) + n_(i)
2M i=1

(22)

Clearly, the expected value of this estimate is the de-

sired quantity,

A

= (23)

hence the estimator is unbiased. Assuming the underlying

processes are Gaussian, the estimate is a scaled central

chi-square random variable with 2M degrees of freedom
and variance

A cr 4

var(a_)= 1 (4Mcr4)- k (24)

In typical applications, the component of the noise vari-
ance due to the receiver remains constant, while the com-

ponent due to the background changes slowly with ele-

vation and azimuth, but may be considered constant for

many weight estimates. The frequency with which off-
source measurements must be performed depends on the

specific details of the experiment.

The numerator of each rotated weight estimate can be

obtained using Eq. (19). In addition to an estimate of the

9O

product SiS[ (whose expectation is proportional to the
correlation between the first and kth channels), this ap-

proach also requires an estimate of the magnitude of the
complex scale factor in the central channel. This quan-

tity can be updated with each new weight estimate, us-

ing the last noise power measurement, or a separate on-
source measurement can be made periodically for the cen-
tral channel as well. Both cases will be considered. First,

assume estimates are made with each update, using the

same number of samples as for the weights (L). The esti-

mate of the signal power in the central channel then be-
comes

A L+M

IS1 2 = zl _.= SlY(i) + ill(i) 2 M1 ,=L+:_ I_(i)1_ (25)

with expectation

and variance

Again, we observe from Eq. (26) that an unbiased es-
timate is obtained. If a separate power measurement is

carried out for the central channel using N independent

samples, then the signal power estimate becomes

2 1 N 2 1

"= i=N+I

Ifil(i)[ 2 (28)

This estimate is also unbiased; hence, Eq. (26) still

holds. However, the variance of the estimate decreases

if N > L, as shown by comparing the following expression

with Eq. (27):

yarN(S1 2) _- _

The estimate of the signal power can, therefore, be

made arbitrarily good by making both N and M suffi-

ciently large, provided the natural time scales of the rele-

vant process variations are not exceeded.



Nextconsiderthestatisticsof thecoefficientproduct
estimates,SjS_. As shown in Eq. (11), the expectation
of the product of the received samples between any two
channels is the desired coefficient product, implying the

unbiased estimator structure defined in Eq. (13).

The variance of this estimate can be obtained by first

deriving the second moment of the coefficient product,

subtracting the square of the expectation, and dividing the

result by the total number of independent sample products

averaged to obtain the estimate. If L sample products are

averaged, this can be expressed as

var = [2 [E(_j_) 2) (3O)

Consider the second moment first. Writing the received

samples as in Eqs. (3a) and (4), the second moment of the
sample products between two distinct channels j and k

becomes

_l_;l_: _{(_;,_l_+_; +_;_._÷_;) (_;_1_+o_ _÷ ÷ )}

+ (products whose expectation goes to zero)

= l_12igki_ + ig_i_iai_ I_ki2+ ig, i21ai_ I_12+ i_3]2 i_,i 2 (31)

where the overbar denotes expectation. Letting ]fij.[2 =

2a], ]_[2 = 1, and with [5]4 = 2, the second moment
becomes

2 2
EIS./S; 12= 2IS/12 ISk 12+ 2l,_j 12o_+ 21S,_12,:,'_+ o'ko/

(32)

Subtracting the square of the expected value and divid-

ing by L yields an expression for the variance:

var (SIS;) = [Sj[2[Sk[2

+2(,_;i2,_+ ,_,_4)+44_ (33)

If the estimation errors are sufficiently small, each esti-

mate may be written as its true value plus a small random

deviation. Assuming this to be the case, we have

A

SISk = g;Sk(1 -t- _) (34a)

A

[$1 ]2 = 1,_'112(1+ fl) (34b)

A

2 = _(1 + 7) (34c)_k

Using Eqs. (24), (27), and (33), it follows that each
error term is a zero-mean random variable with variance

2
vat _ = T

x 1.1 4- 1_1121_k1_÷ 2 ÷ (35a)\lS_l 2 Is_l_J J

1 {Q (2cr_-b IS1, _ -_cr_};

Q = L or N (35b)
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a..s

1
var (7) =_ (35c)

The estimate of the rotated weight can now be written

_ke-'_e ' _ ,_lg; (1 + 0_)

2_[g11 v/O+D)( 1 +7)

(1 + a) (36)
_ Ck (1+ 2_) (1+7)

where - - -. 2 -CkA_._S1Sk/2O'k[SI[. Expanding the denominator,

multiplying through, and keeping terms up to second order
yields

_ke-J°,=dk 1-_- 1-_+_-7

+a-7(i+_-7)] (37)

The expected value ofthisexpressionis

E

----Ck[1 +var (_-)+var (7)] (38)

which shows that the estimate is biased, but becomes

asymptotically unbiased as the number of samples grows

without bound. Writing the rotated weight estimate as

_ke-"-')o, = C'k(1 + () (39)

where ( = o_- _ - 7 - c_7 - "_ + 7_ + _-_4+ 7 2, it follows
that

var (_bk'_--je') = ]Ck] 2 var (() (40)

Here _ is a random variable with second-order statistics

and

E(() = -_- + 7-_ (41)

[ p]2var(()=E a-_-3'- -

T+72+, ? +_-_-+ 3'2

+ (products whose expectation is zero) (42)

Since E(a) -- E(/3) = E(3') = 0, and _, fl, and 3'
are statistically independent, it follows that all terms in

Eq. (42) containing a, /3, or 7 to the first power go to

zero. Thus, the normalized variance of the rotated weight
may be expressed in symmetric form as

IC_1-2 var (t_k'_ --j°,) =

var(ol)+ var(_-)+ var(3')

+ var (a)var (2fl--)+ var (7) var (_-)

+ var (a) var (7) (43)

The statistics of these rotated weight estimates for spe-

cific parameter values are examined in the next section.

VI. Numerical Results

The expressions for the normalized bias and variance

of the rotated weights developed in Eqs. (41) and (42)
are functions of the parameters M, N, and L, as well as

of the signal powers and noise variances in the combiner

channels. The noise variance is largely determined by the

physical characteristics of the front-end amplifiers, and in-
cludes contributions from background radiation as well.

The signal power in each channel depends on the strength
of the source, the antenna aperture, and the amount of

distortion suffered by the main reflector. However, the re-

maining parameters can be selected to achieve a desired
level of estimator performance.
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In a typical combining experiment, the antenna is first

pointed off source, and the noise power in each complex

channel is estimated according to Eq. (22). Denote the

number of samples used to make this estimate M. Next,

the antenna is pointed on source, and the signal in the cen-
tral channel is measured by means of Eq. (25) or Eq. (28),

using either L or N samples, where L is the number of sam-

ples per update. Of course, the signal levels in the other
channels could also be determined, but that information is

not used by this algorithm; instead, the rotated complex

weights are estimated according to Eq. (19). Theoretically,
some improvement could be obtained if independent signal

power measurements were used to improve the magnitude

estimates, but that issue will not be addressed here.

After the coefficients are determined, combining weight

updates are obtained every L samples for use in the real-

time combining operation. The inequality (M, N) >> L is

usually valid, since both signal and noise power levels tend

to remain constant over a great many coefficient updates.

However, we shall also consider the case N = L, corre-

sponding to a situation where the signal power in the cen-
tral channel changes fast enough to warrant its measure-

ment with each update. This could occur if wind-induced

dynamics or time-varying pointing errors were present.

Representative values were chosen for the signal power

levels, normalized to the noise variance, which was as-

signed a value of 1 power unit. With a channel noise tem-
perature of roughly 100 K, a strong Ka-band radio source

(such as Venus or Jupiter) may produce a 10-K rise in the
central channel when observed with the 34-m antenna at

DSS 13. At low and high elevations, gravitationally in-
duced distortions of the main reflector generally deflect as

much as 10 percent of the total signal power to some of
1,1_112 0.1the outer channels. Thus, the values crk = =

and IS_I 2 = 0.01, k _ 1 will be assumed for the numerical

examples that follow, meaning that the signal power in the

central (reference) channel is one-tenth of the noise power,

while typical signal powers in the outer channels are 10
times smaller than those in the central channel.

The normalized bias defined in Eq. (41) is shown in

Fig. 3 as a function of N, with M as a parameter. For any

N, the minimum achievable bias is a monotone decreasing
function of M that approaches an asymptotic limit from
above. Minimum values of M and N are clearly specified

for any desired bias level: for example, if we wish to main-
tain a normalized bias of 0.001, then M must be greater
than about l0 s and N must be at least 3 x 105; at a sam-

pling rate of 2 × 105 samples/see, this would take a mere

2 x 1.5 = 3 sec, which is short compared to typical time

scales encountered in practice. If we let M exceed 106,

then the above value of N will suffice. Suppose we select

this value of N in order to meet the bias requirements, and

examine the normalized variance defined in Eq. (43).

The normalized variance of the rotated weight esti-

mates is shown in Fig. 4 as a function of L. It is clear

that a given value of N specifies a limit for the smallest
attainable variance and, hence, limits the performance of

the weight estimator. For the specified value of N, this
limit is about 4 × 10 -4, even as M and L grow without

bound. The dependence on N disappears if the signal

power is recomputed with each update, using the previous

L samples, corresponding to the case N = L. Now any de-

sired level of performance can be achieved provided that

both M and L are sufficiently great, as shown in Fig. 5.

Given M and L, the corresponding normalized bias can be

determined from Fig. 3 by substituting L for N. Note that

for very small values of L, the variance increases rapidly

when N = L, due to the greater error in the signal power
estimate as a result of insufficient observations.

VII. Summary and Conclusions

A digital combining-weight estimation algorithm for use
with broadband sources has been described and analyzed.

Although the algorithm provides a biased estimate of the

combining weights, the bias can be reduced to any de-
sired level by observing enough samples. The normalized

variance of the weight estimates can be similarly reduced;

however, care must be taken to obtain accurate signal and

noise power estimates, as these quantities ultimately limit

the performance of the estimator at all update rates. With

this algorithm, only three primitive estimates are needed
to obtain each combining weight estimate: the noise vari-

ance in the kth channel, the signal power in the central

channel, and the complex correlation coefficient between
the central and kth channels. The first two are simple

power measurements requiring magnitude squaring and
accumulation, while the third is a complex multiply-and-

accumulate operation; both operations can be carried out

with current PC-based digital hardware, provided the sam-

pling rates do not exceed roughly 250,000 samples/sec.

Consequently, this approach is useful for reducing estima-

tor complexity while greatly increasing the portability of
the entire array feed compensation system, enabling the

demonstration of combining gain on a variety of DSN an-
tennas.
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